Shelf Sea Biogeochemistry blog

Showing posts with label Ocean Microstructure Glider. Show all posts
Showing posts with label Ocean Microstructure Glider. Show all posts

Thursday, 16 April 2015

OMG - Glider glee!

Dr Charlotte Williams, Marine Physics and Ocean Climate, National Oceanography Centre

Today at our main sampling site (CANDYFLOSS) we are deploying our sixth and final ocean glider! Ocean gliders are robots which ‘glide’ up and down in the water whilst taking measurements of temperature, salinity, chlorophyll and oxygen (plus a few more things), and these are what I work with. They send their data back to us when they surface via satellite. The amazing thing about gliders is that we can see the data they are collecting from anywhere with an internet connection as soon as they surface (every 30 mins or so in 100m of water). In fact as I am writing this blog I am checking the data that is coming in from the 4 gliders we have out at the moment! This has been useful for our research cruise as we are trying to catch and sample the ‘spring bloom’. This is where light and nutrient requirements for phytoplankton in the surface become just right in spring, and so we see a bloom in phytoplankton growth. This can be observed by an increase in chlorophyll, which the gliders measure.  



The ‘OMG’ glider being ballasted in the tank. Photo: Jose Lozano.

Sam Ward, the glider engineer from National Marine Facilities, has been working very hard to ensure that the gliders are ready for the water. This includes ‘ballasting’ them in a big tank on the back deck. The gliders don’t have a propeller, they move up and down in the water by changing their buoyancy, which is much less power hungry. Sam has to check how buoyant the gliders are in the seawater that they are being deployed in, as the density of seawater changes according to its temperature and salinity. There will be more to come on how the gliders work in Sam’s future blog! The last glider being deployed today is particularly exciting as this is an Ocean Microstructure Glider (OMG). This glider measures all of the things listed above, but also measures the turbulent kinetic energy dissipation, which is a kind of fancy term for turbulence and mixing. Being able to estimate the mixing in the shelf seas is important because we can then estimate how nutrients and carbon move around.  We will have to see if the dolphins return to see the OMG glider!  



Another glider about to dive under the waves. Photo: Jose Lozano

Thursday, 27 November 2014

Heading north

Ocean research cruise blog of Jonathan Sharples

 

Another successful day yesterday, with the wirewalker mooring and both of the gliders recovered very quickly. Jo Hopkins immediately removed all of the instruments from the wirewalker, and strapped them to the CTD ready for the next time we lowered it through the water. This allows Jo to calibrate the wirewalker data with the data collected by the CTD, with the CTD data all calibrated against analysis of samples we collect in the sample bottles. Every profile of data we collect through the water with the CTD involves samples being collected for salt concentration, dissolved oxygen and chlorophyll. These samples are analysed against known, internationally-recognised standards and lab techniques, so that we can calibrate the sensors on the CTD and estimate the error associated with their measurements. This is a vital part of any science: no other scientist would allow us to publish our results if we couldn’t demonstrate that our measurements achieved acceptable standards.

omg glider recovery

We can measure salt concentration to within about 2 thousandths of a gramme in 1 kg of seawater. We need to know salt to this level of accuracy because it has, along with temperature, a big influence on how dense the seawater is. The sea is always attempting to sort itself out so that less dense water floats above denser water, so knowing salt and temperature can tell us a lot about how the water will be moving. I’ve mentioned dissolved oxygen before in the context of Chata’s work – biology both produces oxygen (when the microbial plants are glowing) and consumes oxygen (when bacteria break down the organic matter), so accurate data on the oxygen in the water tells us a lot about how the biology is operating. Chlorophyll in the ocean is the same green stuff that you see in leaves and grass – the chemical that plants use to collect energy from sunlight. Chlorophyll is particularly good for plants that live in the ocean. Sunlight is absorbed very quickly as it passes downward from the sea surface. All of the red light from the sun is absorbed within the first 1 metre below the sea surface. Blue light travels the deepest in the sea, and chlorophyll is well suited to capturing energy from blue light. Clearly this is an advantage for the microbial plants in the sea, as they are mixed through the upper few 10s of metres and need to maximise their chances of collecting the sun’s energy. But why should land-based plants use chlorophyll when they don’t have the problem of metres of ocean absorbing the light? Photosynthesis first evolved in the ocean. Land-based plants haven’t bothered to evolve a form of photosynthesis more suited to life above the sea, instead they just highjacked the system that the ocean’s microbial plants had developed. Quite literally. At the heart of the photosynthesising biochemical machinery in every leaf lies a light-capturing system that can be genetically traced right back to photosynthesising marine bacteria.

Billy does the salts

We’ve started to head north through the Celtic Sea now, stopping every 25 km or so to lower the CTD through the water and collect more information. The wind has picked up, with about 25-30 knots now. The sea is looking rough, but it’ll take a few hours for the swell to pick up and start to move us about.

original post 

Wednesday, 12 November 2014

Catching snow in the sea

Ocean research cruise blog of Jonathan Sharples

 

The last day on this station began with another 0500 early CTD, so that those scientists working on how fast the plankton are growing can start another set of experiments. During the afternoon we released another glider. This one has a special chemical sensor on it that has been designed at the National Oceanography Centre. It measures the amoung of nitrate in the water, a key nutrient required by the plankton. As with the glider yesterday, we are leaving this one in the water just while we are at sea; we aim to retrieve it just before we head back to Southampton in early December.

glider 2 deployed



We also had a go at using our “Marine Snow Catcher”. This large tube is designed to trap 400 litres of water at one depth. The tube is then brought back on deck, and all of the tiny particles in the water (plankton, bits of detritus)are allowed to settle in the tube. After 2.5 hours the scientists collect particles from near the top of the tube (which will be very tiny and will not have settled far), the middle of the tube and the bottom (containing the coarsest particles which settled quickly). We want to see how the organic matter in these different particles is being recycled by bacteria in the ocean; particularly we want to know if the bacteria recycle nutrients, such as nitrogen and phosphorus, more quickly than they recycle carbon.

snowcatcher
 
Our communications are still suffering. It looks like we may be down to a limited email connection for the rest of the trip, with the problem with the main system having been narrowed down to a component that we don’t have a spare of.

Original post 

Glider away….

Ocean research cruise blog of Jonathan Sharples

 

Two new pieces of equipment deployed yesterday. First, the Ocean Microstructure Glider (OMG). A glider does exactly what the name suggests – it glides through the sea. By making itself heavier than the water, and tilting its nose downward, it glides downwards. Then, when it gets to the depth at which it has been instructed to turn round, it makes itself lighter than the water, points the nose up and glides towards the surface. Inside a glider are instruments similar to those on the CTD – measuring water temperature, salt and plankton. The OMG also has some specialised instruments for measuring the amount of turbulence in the water. That’s what the “microstructure” part of the name refers to – the sensors measure tiny changes in water currents associated with turbulence. We are really interested in turbulence, as it mixes nutrients, plankton and carbon through the water. The really neat thing about gliders is that when they surface they can stick their tail end out of the water and communicate back to shore via a satellite link, transmitting data back and also receiving new instructions. Our gliders are not controlled by us on the ship, but by scientists back at the National Oceanography Centre in Southampton and in Liverpool.

wirewalker deployment

 Immediately the glider was away, we moved the ship clear and deployed a “wirewalker” mooring. This again has instruments for measuring temperature, salt and plankton, but it moves up and down a wire fixed to an anchor on the seabed and a buoy at the sea surface. The action of the waves on the buoy provides the energy that the wirewalker needs to ratchet itself down the wire (so, a note to my nephew Ben there – yes we do now have things that use the waves’ energy to power them! Your idea was spot on); it then releases its grip on the wire and floats back up to the surface. With decent waves (of which we’ve been having plenty) the wirewalker can profile up and down the cable every 15 minutes or so. Jo Hopkins for the National Oceanography Centre in Liverpool is running this instrument – she is keen to capture the details of how the water is mixing as the weather cools into winter.

omg glider deployment2
 
We’ve lost a lot of our communications at the moment – certainly internet and phones are out. Zoltan, the NMF computer tech, is working through all possible causes and he’ll be calling on the ships ELT tech as well. Hopefully we’ll be fixed soon. We still have access to the National Marine Facilities Webmail though, so I can get these posts through OK.

Original post 

omg glider off