Shelf Sea Biogeochemistry blog

Friday, 28 August 2015

Worm holes and snail trails




My job on the RRS Discovery is to characterise the activity of the species that live in the sediment.

I look at a process called bioturbation, which is when species living in the sediment create burrows or move sediment particles up or down.  These activities stimulate microbial growth and encourage the cycling and release of nutrients and are important mediators of shelf sea processes.

To measure bioturbation we use coloured particle tracers we call luminophores, which are placed on top of sediment cores we collect in a 2 – 3 mm thick layer.  These are bright coloured particles that can be easily seen when they are mixed into the underlying sediment.

There are many small worms, shrimp and snails living in the sediment that are constantly moving, grazing, hunting, burrowing, and bioirrigating (moving water to keep burrows and the sediment oxygenated). They can create vast networks of burrows such as those created by Nephrops norvegicus, the Norwegian lobster. They can create mounds and pits on the sediment surface like the Angular crab, Goneplax


An Angular crab, which can create deep pits and large mounds around a burrow network.
We photograph the sediment under ultra-violet light, making the luminophore particles fluoresce so they can be easily identified compared to the surrounding sediment by an automatic computer program and the number of luminophore pixels per sediment depth calculated.


An example image of luminophore movement taken under ultra-violet light.  It is easy to see where the luminophores have been moved by species activity. These trails have probably been created by small worms creating burrows which the luminophores have fallen down. This is an easy and effective way to measure species activity in the sediment in the shelf seas and we can relate this activity to nutrient fluxes measured over time.

 

Tuesday, 25 August 2015

Recovering the Smart Buoy’ systems

We recently recovered two ‘Smart Buoy’ systems operated by Cefas. Several such observing systems have been deployed at various stations around the Celtic Sea since March of 2014. These systems allow us to understand variation in the ocean in a way that is similar to weather monitoring. The sensors can record a variety of variable crossing physics to biogeochemical themes. These systems allow us to see how weather and climate affect surface ocean conditions and the growth of marine algae via primary production. It can measure changes in salinity, primary production nutrients, chlorophyll fluorescence, dissolved oxygen, and suspended particles. There is also a string of temperature sensors down to 60 m depth.

Recovering a 'Smart Buoy' system
We used the ship’s sensor and sampling systems to calibrate the buoy sensors, both when deployed and recovered to check that everything is working as expected and calibrate any sensor drift. Together with the sediment samples being take in the area, these long-term observatory observations allow us to better understand the variation in way that can be achieved when ships are not present. This helps bridge understanding between site visits over the change of seasons. 

Saturday, 22 August 2015

Collecting images from the seafloor.

By Henry Ruhl

We have completed sediment core sampling at our four main study sites. This is a key achievement for the trip. We are now sampling one other site that allows us to cross-reference our findings with those of other studies and a long-term study station with the nickname Candyfloss. This site is closer to the continental shelf edge and open ocean than we have been for most of the trip. Marine life spotting has been good and we even laid eyes on the RRS James Cook about ten miles from us. The James Cook is researching life in the canyons that extend just beyond the shelf edge. We will soon return northward to for the more AUV deployments, the fourth deployment of the NOC lander, as well as a few other remaining tasks.

We are using the Autsub3 autonomous underwater vehicle (AUV) during our cruise to collect photographic images of the seafloor, as well as sonar-based images of the shape and texture of the seafloor. We have been running the AUV in a ‘mowing the lawn’ pattern of parallel lines that are about ~5km long. After checking our seafloor shape and texture mapping for any obstacles, we ‘fly’ the AUV as close as 2.5 meters from the seafloor to collect colour photographs in the moderately cloudy waters of the Celtic Sea.

The images will be geo-referenced, which effectively turns the photo into a map like you see in Google Earth. As you can see below, that 2.5 m height above the seafloor still gives us images that are very useful for determining the identity size, and location of all the observed images. This can provide a landscape scale view of the seafloor and its inhabitants, which we can then use to improve estimates of ecological and biogeochemical patterns and processes.


The seafloor and its inhabitants
 
AUV photographs are particularly useful in estimating the distribution of biomass of larger animals that are not sampled well by trawls or sediment cores. Observed animals include crabs, shrimps, and anemones as well as fish. The images above and below come from a Celtic Sea site where the seafloor is dominated by sandy mud.

The seafloor and its inhabitants

Thursday, 20 August 2015

Mini-Flume Experiments

Sarah Reynolds. Senior Research Associate and Lesley Chapman-Greig, MRes student,  are Marine Biogeochemists with the University of Portsmouth, and their research is looking at how the processes in marine sediments can contribute to the carbon and nitrogen cycles in shelf seas.

For one of their experiments, sediment from the seabed is collected from a NIOZ core and brought up to deck, where it is stored in a mini-flume alongside water collected from the just above the bottom of the seabed by the CTD. The mini-flume simulates resuspension events on the seabed. The sediment lies at the bottom of the mini-flume, with the water from the CTD above, which is stirred by paddles of the flume to simulate the action of currents on the bottom of the seabed, which can disturb the seabed sediments causing them to be mixed (the scientific term is re-suspended) into the overlying water column. During resuspension events nutrients and carbon stored in the sediments can be released into the water column.

Mini Flume

Over the course of the experiment (~3 hours), samples of water are collected from the mini-flume at certain time points and collected for inorganic nutrients, dissolved organic carbon, particulate organic carbon and suspended particulate matter. These measurements can then be used to determine the concentration of nutrients and carbon that are released into the overlying water column. As the mini-flume experiment progresses the paddles of the flume are moved faster and faster until complete bed failure occurs.

The increases in speed of the water moving  above the sediment in the mini-flume, make it possible to measure how different current speeds close to the surface of the seabed may change the concentration of carbon and nutrients that are released from the sediments.

Sediment is collected for mini-flume experiments at three cohesive sediment sites, with each site having a different type of sediment, ranging from very muddy sediment with fine particles sizes to muddy sand and sandy mud. Depending on the type of sediment, the concentration of carbon and nutrients and the energy required to lift the sediment off the seabed varies, so by conducting this experiment with a variety of sediment types it is possible to discover how the concentration of carbon and nutrients mixed into the water column by seabed currents varies between different sediment types.

This cruise is final cruise in a yearlong project, where the same data have been collected at different stages of the seasonal cycle of the Celtic Sea. The data collected by this experiment can be used alongside other measurements, collected from the different sites at different times of the year, to get a good picture of how the suspension of sediments affects the carbon and nutrient cycles in the Celtic Sea, with the hope that these can be extrapolated to the Western European continental shelf.

Tuesday, 18 August 2015

36 years of working on Discovery

By Peter Statham
Ocean and Earth Science, University of Southampton

When I first set foot on the old Royal Research Ship Discovery in 1979 in Cape Town I had little idea that in 2015 I would be on the Discovery once again but now on the most recent version of the vessel to carry this famous name. 

I am interested in the chemistry of the ocean and how chemical processes affect the biology and other parts of the marine system. This aspect of oceanography is important in terms of understanding how the sea works and can be impacted by climate change. 

On this trip we are studying where the essential nutrient iron comes from on the shelf and how it may move away into the open ocean.  In some areas the element is at such low concentrations that it limits plant growth and thus impacts ecosystems, so it is important to know where it comes from, and one potentially important source are the edges of shelf seas. 

Launching a glider from Discovery. Gliders move up and down through the water by altering their density and “glide” on their wings from one location to another in the upper ocean, whilst collecting data that is sent by satellite to shore when it is at the surface. This new model has a small propeller to help it occasionally overcome strong currents.
Whilst frequently demanding with long working hours I always enjoy the times at sea with the wide range of people on board, the constant challenges to be dealt with and the buzz when a long planned experiment finally works out.  Whilst new techniques such as satellites and gliders are developing rapidly, ships are still essential tools in the study of the oceans. Discovery is a world-class research platform for UK marine science that will support our new generation of oceanographers into the future.