Shelf Sea Biogeochemistry blog

Monday 2 March 2015

Discovery leaving Southampton for cruise DY021

By Louis Byrne, British Oceanographic Data Centre, NOC


RRS Discovery docked in Southampton. Picture taken by Amber Annett

After a week of setting up where all manner of frames, sensors, analysers, buoys, containers, chemicals, supermassive autonomous vehicles and an array of bedraggled looking scientists have boarded the RRS Discovery it was finally time to leave the port of Southampton for the open sea!

Breakfast on the morning of departure is at 7:30 and is followed by a safety briefing and familiarisation before departure at 1015. Rumour had it that we were leaving port into fairly rough seas, and once we have escaped the shelter of Southampton docks those rumours turn out to be correct.  It is a bit of a baptism of fire for some of the scientists on board and I think many are feeling a little queasy. 

Before our stomachs have had time to settle it is time to practice the muster, which is similar to a fire drill, however once at the assembly point everyone is required to put on a life jacket, enter an orange life boat and consider how rubbish it would be if we actually had to use it,  52 people in a small orange box with no toilet, one small hatch for air and fishing rods which aren’t actually provided for us to catch fish, but to give us the psychological illusion that there actually something we can actually do ourselves to improve our chances of survival as we get tossed around like an orange cork in a gigantic tumble dryer (if today’s  seas are anything to go by). 


Mini Stable (left) and autosub (right) on deck departing Southampton. Picture taken by Richard Cooke, National Oceanography Centre, Liverpool.
The original plan was to conduct some equipment trials at a long term observation station near Plymouth called E1, however due to the state of the seas we’ll be skipping the trials station and heading straight out to the Celtic Sea and to site A, which we are expected to reach at 9PM tomorrow (Monday). As there is little left to do today a few of us hit the bar and tv room, just in time to watch England get mauled by Ireland in the 6 nations. All in all it’s been a pretty rough day.  Just before signing off there is time for a bonus question:

Who set off the Discovery’s fire alarm the night before departure by spraying deodorant in their cabin? Answer in the next blog.

Shelf Seas Biogeochemistry – A short introduction

By Louis Byrne, British Oceanographic Data Centre, NOC

We woke up on Monday to a sea which was perhaps even worse than Sunday. We were still a fair distance away from site A and were not scheduled to reach site A till approximately 2100 Monday evening. Due to the rough seas I spent the majority of the day hugging my toilet bowl, but not before making the rookie mistake of blocking my sink with the remains of my breakfast, which Geoff the Steward was not too happy about.  Due to a day spent in transit not much happened, and due to my sea-sickness I was not around to see what did, therefore I thought it would be a good time to introduce the reason why we’re rushing towards the Celtic Sea at a slow and steady speed of seven knots.

Although shelf seas make up only 5% of the ocean surface, they have been estimated to be the most valuable biome on earth, with high levels of primary productivity supporting diverse ecosystems. High concentrations of nutrients support the growth of phytoplankton, which are single celled marine organisms that photosynthesise like plants on land. Like plants on land, Phytoplankton are the base of the marine food web and they provide a diverse food source for many marine creatures, such as zooplankton.
 



Phytoplankton are the foundation of the oceanic food chain.

Zooplankton are tiny marine animals which are food for fish and countless other marine organisms, that are then in turn eaten by others. It is in this way that the sun’s energy fixed by phytoplankton on the surface of the water column is distributed throughout the marine ecosystem, underpinning more than 90% of global fisheries and offering many other important ecosystem services.

In addition to supporting the entire marine food web, the photosynthesis carried out by phytoplankton also removes significant amounts of carbon dioxide from our atmosphere.  Although tiny, phytoplankton have a disproportionately massive effect on our atmosphere, and are responsible for creating as much as half of the oxygen that we breathe, removing an equally large amount of carbon dioxide as they do it. Some of the carbon extracted by the phytoplankton will sink to the sea floor and be stored in the sediments (often for thousands of years!), reducing the overall concentration of carbon dioxide in our atmosphere.

In order for the shelf seas to sustain these high levels of production, the phytoplankton must be supplied with nutrients, but where do these nutrients come from? It is the need for us to better understand the role of shelf seas in the global nutrient cycle, how this supply of nutrients determines the shelf’s primary and secondary production and how this affects other processes such as carbon storage which has led to the Shelf Seas Biogeochemistry programme.

At 2100 on Monday night we reached site A and decided that the seas were too rough to sample that night. Therefore, an 0600 hours CTD cast was scheduled for the following morning, and we were hopeful that our cruise was about to get its first piece of data.

For those of you wishing to see the answer to yesterday’s question, the answer is Richard Cooke of the National Oceanography Centre, Liverpool.

Tuesday 27 January 2015

Expeditions of Discovery find the secrets of the shelf seas

Shelf Sea Biogeochemistry and the recent pelagic cruise (DY018) were featured in an article 'The secrets of the shelf seas – one of Earth’s most important ecosystems' by The Observer newspaper. 

The sea off our coasts teems with microscopic life that breaks down the carbon dioxide we pump into the air. Now a series of expeditions aims to find out more.


Colony of salps floating under the RRS Discovery during DY018. Underwater photography courtesy of Claire Ostle (University of East Anglia).

Wednesday 3 December 2014

Docked

Ocean research cruise blog of Jonathan Sharples

 

We finished up all of the sampling during yesterday afternoon, and headed in past the Needles lighthouse on the west corner of the Isle of Wight. The pilot was picked up just before Calshot Spit, and we steamed up Southampton Water. It was bitterly cold! Probably the coldest weather we had experienced all cruise.

The ship docked in Empress Dock, in front of the Oceanography Centre, just after 1700. As soon as the gangway was in place, and we’d got the announcement that the ship had been cleared by customs, off we all went – the entire science group headed off through the docks to the Platform Tavern.

And that’s it. A very busy morning ahead as we unload the ship, but normally we are able to get away by noon. The end of a very productive cruise, with remarkable weather allowing us to do a lot more than we expected.

Original post 

The Needles

Tuesday 2 December 2014

Land sighted

Ocean research cruise blog of Jonathan Sharples 

 

We steamed along the south coast overnight, and at breakfast this morning we passed Lulworth Cove and then Swanage. There’s just one last bit of science left to do. We are crawling slowly into Poole Bay and Christchurch Bay, taking surface samples of seawater. Clare Davis, from the University of Liverpool, is processing these water samples for a couple of the Liverpool University PhD students. The students are researching the dispersion of organic matter from estuaries out into the ocean, and also looking at the relative supplies of nutrients from rivers and from the deep ocean to the shelf seas. These samples are also tying our work into another research project focussed on land catchments and river nutrients. Anouska Panton, a researcher working at the University of Southampton, will be carrying out fieldwork in Christchurch harbour today so that later we can link the data together with what we are collecting to get a broader picture of river-supplied nutrients and their fate in the autumnal shelf sea.

One important job we managed to clear yesterday was the cruise photo. We picked the right time for it, sat 20 miles off Plymouth with nice, sunny weather. Today wouldn’t have been as good – it’s windy and grey outside. But at least we can now see land, for the first time in three and a half weeks.

Original post 

DY018 people

Monday 1 December 2014

Visitng E1

Ocean research cruise blog of Jonathan Sharples

 

We arrived at position E1, south of the Eddystone, at about 0600. This is a site regularly sampled by the Plymouth Marine Laboratory (PML), generally about once per month but more frequently recently in collaboration with the project we are working on. Scientists and technical staff at PML maintain a data-gathering buoy out here. We carried out 6 seabed cores this morning, and were then met by the two PML boats. Coring the seabed from the PML boats is difficult, so they are very happy that we can stop here for a few hours to collect these samples for them, and transfer the samples to their boats to be taken back to PML and analysed.

pml explorer alonside

It was also our last CTD profile here at E1, at 0630. And it was fully mixed from the surface down to the seabed! Not too surprising as E1 is fairly close to the permanently-mixed water of the English Channel, and it’s only 75 metres deep. So we expect it to become mixed relatively early in autumn. We’ll do some more zooplankton nets this afternoon – Sari Giering is keen to have a lst go at collecting some more of the trichodesmium nitrogen-fixing bacteria, this time to get some samples for some DNA analysis.

Nick shows us the engine room


The clear-up of the labs has begun. The ship has a fast turn-around in Southampton, so we need to be ready when we arrive tomorrow evening to get some of the larger bits of equipment and container labs off. Some of the scientists took some time to go on a tour of the ship’s engines. Nick, the 2nd enginner, showed us around those normally hidden parts of the ship that power us through the water, provide fine-control of the ship’s position when we are working a station, as well as powering all our instruments, making our freshwater, ventilating the ship, and treating the sewerage. Remember there are about 50 people living on this 100m-long metal box for several weeks at a time: the ship is like a small, very independent village.

Original post 

Sunday 30 November 2014

Last of the Snowcatchers

Ocean research cruise blog of Jonathan Sharples

 

The weather eased off very quickly during yesterday, ending up with winds less than 10 knots. We arrived back at the mooring site in the central Celtic Sea and began a last set of sample collection and experiments, mainly focused on the zooplankton and on the particles settling down through the water.

The Marine Snowcatcher worked well. We’re getting better at operating it, though we think that is mainly a result of calmer weather. We are still not completely convinced that the deeper samples collected with the Snowcatcher are always from the depth that we think we have triggered the catcher to shut – if the ship is pitching at all it’s possible for the catcher to shut while it is being lowered through the water to the sample depth. However, we can solve that by collecting nutrient and salt samples from the catcher and comparing those with what we see in the CTD data to tell us the depth that the Snowcatcher sample was really taken.

last snowcatcher
 
Elena Garcia-Martin, from the University of East Anglia, and Darren Clark, from the Plymouth Marine Laboratory, are working on last these samples. They are measuring how the different sizes of particles, and their different components (carbon, nitrogen phosphorus), and being recycled by bacteria. The deep bacteria are acclimatised to darkness, so they have to be collected after sunset, extracted from the Snowcatcher carefully so that they don’t get fried by the ship’s deck lights, and taken into a darkroom laboratory for analysis.

Elena and Clare sampling particles

One last set of measurements to do here this morning, then we head off towards Plymouth. Should arrive just south of the Eddystone lighthouse about 0600 tomorrow.

Original post